Exercise 4

Solve the given ODEs:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0, y(0)=2, y^{\prime}(0)=3
$$

Solution

This is a linear ODE with two initial conditions, so the Laplace transform can be used to solve the problem. The Laplace transform of a function $f(x)$ is defined as

$$
F(s)=\mathcal{L}\{f(x)\}=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

so the derivatives of $f(x)$ transform as follows.

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime}(x)\right\} & =s F(s)-f(0) \\
\mathcal{L}\left\{f^{\prime \prime}(x)\right\} & =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Take the Laplace transform of both sides of the ODE.

$$
\mathcal{L}\left\{y^{\prime \prime}-3 y^{\prime}+2 y\right\}=\mathcal{L}\{0\}
$$

Use the fact that the operator is linear.

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=0
$$

Use the expressions above for the transforms of the derivatives and use the definition on the right side.

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)-3[s Y(s)-y(0)]+2 Y(s)=0
$$

Solve the equation for $Y(s)$.

$$
\begin{gathered}
\left(s^{2}-3 s+2\right) Y(s)+(-s+3) y(0)-y^{\prime}(0)=0 \\
\left(s^{2}-3 s+2\right) Y(s)=(s-3) y(0)+y^{\prime}(0) \\
Y(s)=\frac{(s-3) y(0)+y^{\prime}(0)}{s^{2}-3 s+2}
\end{gathered}
$$

Factor the denominator and use the initial conditions, $y(0)=2$ and $y^{\prime}(0)=3$.

$$
Y(s)=\frac{2 s-3}{(s-2)(s-1)}
$$

Use partial fraction decomposition to write the right side as a sum of simpler terms-ones that we know the inverse Laplace transforms of.

$$
\frac{2 s-3}{(s-2)(s-1)}=\frac{A}{s-2}+\frac{B}{s-1}
$$

Multiply both sides by the LCD, $(s-2)(s-1)$.

$$
\begin{aligned}
& 2 s-3=A(s-1)+B(s-2) \\
& 2 s-3=s(A+B)+(-A-2 B)
\end{aligned}
$$

Comparing the coefficients on both sides, we obtain the following system of equations for A and B.

$$
\begin{aligned}
A+B & =2 \\
-A-2 B & =-3
\end{aligned}
$$

The results are $A=1$ and $B=1$. Thus,

$$
Y(s)=\frac{1}{s-2}+\frac{1}{s-1}
$$

Now that we have $Y(s)$, we can obtain $y(x)$ by taking the inverse Laplace transform of it.

$$
\begin{aligned}
y(x) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s-2}+\frac{1}{s-1}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}
\end{aligned}
$$

Therefore,

$$
y(x)=e^{2 x}+e^{x} .
$$

